Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Haig
1
67 kgVerona
2
68 kgElissonde
3
52 kgAlaphilippe
4
62 kgWackermann
5
68 kgvan Poppel
6
82 kgWatson
7
72 kgZabel
8
81 kgValgren
9
71 kgDurbridge
10
78 kgMohorič
11
71 kgEwan
12
69 kgMcCarthy
13
63 kgKolář
14
90 kgArndt
15
77.5 kgBettiol
16
69 kgHaller
17
72 kgLecuisinier
18
65 kgFlakemore
19
72 kgDaniel
20
74 kg
1
67 kgVerona
2
68 kgElissonde
3
52 kgAlaphilippe
4
62 kgWackermann
5
68 kgvan Poppel
6
82 kgWatson
7
72 kgZabel
8
81 kgValgren
9
71 kgDurbridge
10
78 kgMohorič
11
71 kgEwan
12
69 kgMcCarthy
13
63 kgKolář
14
90 kgArndt
15
77.5 kgBettiol
16
69 kgHaller
17
72 kgLecuisinier
18
65 kgFlakemore
19
72 kgDaniel
20
74 kg
Weight (KG) →
Result →
90
52
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | HAIG Jack | 67 |
2 | VERONA Carlos | 68 |
3 | ELISSONDE Kenny | 52 |
4 | ALAPHILIPPE Julian | 62 |
5 | WACKERMANN Luca | 68 |
6 | VAN POPPEL Danny | 82 |
7 | WATSON Calvin | 72 |
8 | ZABEL Rick | 81 |
9 | VALGREN Michael | 71 |
10 | DURBRIDGE Luke | 78 |
11 | MOHORIČ Matej | 71 |
12 | EWAN Caleb | 69 |
13 | MCCARTHY Jay | 63 |
14 | KOLÁŘ Michael | 90 |
15 | ARNDT Nikias | 77.5 |
16 | BETTIOL Alberto | 69 |
17 | HALLER Marco | 72 |
18 | LECUISINIER Pierre-Henri | 65 |
19 | FLAKEMORE Campbell | 72 |
20 | DANIEL Maxime | 74 |