Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 31
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Bobridge
1
65 kgDennis
2
72 kgPorte
3
62 kgEvans
4
64 kgPozzovivo
5
53 kgCataldo
6
64 kgDe Gendt
7
73 kgDumoulin
8
69 kgFernández
9
60 kgMalacarne
10
63 kgKennaugh
11
66 kgBoom
12
75 kgDurbridge
13
78 kgHepburn
14
77 kgMeyer
15
70 kgWestra
16
74 kgSánchez
17
73 kgRogers
18
74 kgBak
19
76 kgPineau
20
68 kgBelkov
21
71 kgScotson
22
76 kgJuul-Jensen
23
73 kg
1
65 kgDennis
2
72 kgPorte
3
62 kgEvans
4
64 kgPozzovivo
5
53 kgCataldo
6
64 kgDe Gendt
7
73 kgDumoulin
8
69 kgFernández
9
60 kgMalacarne
10
63 kgKennaugh
11
66 kgBoom
12
75 kgDurbridge
13
78 kgHepburn
14
77 kgMeyer
15
70 kgWestra
16
74 kgSánchez
17
73 kgRogers
18
74 kgBak
19
76 kgPineau
20
68 kgBelkov
21
71 kgScotson
22
76 kgJuul-Jensen
23
73 kg
Weight (KG) →
Result →
78
53
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BOBRIDGE Jack | 65 |
2 | DENNIS Rohan | 72 |
3 | PORTE Richie | 62 |
4 | EVANS Cadel | 64 |
5 | POZZOVIVO Domenico | 53 |
6 | CATALDO Dario | 64 |
7 | DE GENDT Thomas | 73 |
8 | DUMOULIN Tom | 69 |
9 | FERNÁNDEZ Rubén | 60 |
10 | MALACARNE Davide | 63 |
11 | KENNAUGH Peter | 66 |
12 | BOOM Lars | 75 |
13 | DURBRIDGE Luke | 78 |
14 | HEPBURN Michael | 77 |
15 | MEYER Cameron | 70 |
16 | WESTRA Lieuwe | 74 |
17 | SÁNCHEZ Luis León | 73 |
18 | ROGERS Michael | 74 |
19 | BAK Lars Ytting | 76 |
20 | PINEAU Cédric | 68 |
21 | BELKOV Maxim | 71 |
22 | SCOTSON Miles | 76 |
23 | JUUL-JENSEN Christopher | 73 |