Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Lobato
1
64 kgBobridge
2
65 kgImpey
3
72 kgWestra
4
74 kgBonifazio
5
72 kgDurbridge
6
78 kgBelkov
7
71 kgIzagirre
8
66 kgDumoulin
9
69 kgEvans
10
64 kgThomas
11
71 kgMeersman
12
63 kgSánchez
13
73 kgPorte
14
62 kgHaussler
15
74 kgHaas
16
71 kgVon Hoff
17
70 kgDumoulin
18
57 kgMeyer
19
70 kgFlakemore
20
72 kg
1
64 kgBobridge
2
65 kgImpey
3
72 kgWestra
4
74 kgBonifazio
5
72 kgDurbridge
6
78 kgBelkov
7
71 kgIzagirre
8
66 kgDumoulin
9
69 kgEvans
10
64 kgThomas
11
71 kgMeersman
12
63 kgSánchez
13
73 kgPorte
14
62 kgHaussler
15
74 kgHaas
16
71 kgVon Hoff
17
70 kgDumoulin
18
57 kgMeyer
19
70 kgFlakemore
20
72 kg
Weight (KG) →
Result →
78
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | LOBATO Juan José | 64 |
2 | BOBRIDGE Jack | 65 |
3 | IMPEY Daryl | 72 |
4 | WESTRA Lieuwe | 74 |
5 | BONIFAZIO Niccolò | 72 |
6 | DURBRIDGE Luke | 78 |
7 | BELKOV Maxim | 71 |
8 | IZAGIRRE Gorka | 66 |
9 | DUMOULIN Tom | 69 |
10 | EVANS Cadel | 64 |
11 | THOMAS Geraint | 71 |
12 | MEERSMAN Gianni | 63 |
13 | SÁNCHEZ Luis León | 73 |
14 | PORTE Richie | 62 |
15 | HAUSSLER Heinrich | 74 |
16 | HAAS Nathan | 71 |
17 | VON HOFF Steele | 70 |
18 | DUMOULIN Samuel | 57 |
19 | MEYER Cameron | 70 |
20 | FLAKEMORE Campbell | 72 |