Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Dlamini
1
66 kgPorte
2
62 kgBowden
3
65 kgDe Gendt
4
73 kgGerrans
5
62 kgImpey
6
72 kgClarke
7
81 kgSlagter
8
57 kgIzagirre
9
66 kgCanty
10
60 kgHowson
11
68 kgDevenyns
12
65 kgValgren
13
71 kgArndt
14
77.5 kgO'Connor
15
67 kgOwen
16
67 kgBernal
17
60 kgOomen
18
65 kgMeyer
19
70 kgCastrillo
20
65 kgUlissi
21
63 kgEdmondson
22
75 kgWynants
23
74 kg
1
66 kgPorte
2
62 kgBowden
3
65 kgDe Gendt
4
73 kgGerrans
5
62 kgImpey
6
72 kgClarke
7
81 kgSlagter
8
57 kgIzagirre
9
66 kgCanty
10
60 kgHowson
11
68 kgDevenyns
12
65 kgValgren
13
71 kgArndt
14
77.5 kgO'Connor
15
67 kgOwen
16
67 kgBernal
17
60 kgOomen
18
65 kgMeyer
19
70 kgCastrillo
20
65 kgUlissi
21
63 kgEdmondson
22
75 kgWynants
23
74 kg
Weight (KG) →
Result →
81
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DLAMINI Nic | 66 |
2 | PORTE Richie | 62 |
3 | BOWDEN Scott | 65 |
4 | DE GENDT Thomas | 73 |
5 | GERRANS Simon | 62 |
6 | IMPEY Daryl | 72 |
7 | CLARKE Will | 81 |
8 | SLAGTER Tom-Jelte | 57 |
9 | IZAGIRRE Gorka | 66 |
10 | CANTY Brendan | 60 |
11 | HOWSON Damien | 68 |
12 | DEVENYNS Dries | 65 |
13 | VALGREN Michael | 71 |
14 | ARNDT Nikias | 77.5 |
15 | O'CONNOR Ben | 67 |
16 | OWEN Logan | 67 |
17 | BERNAL Egan | 60 |
18 | OOMEN Sam | 65 |
19 | MEYER Cameron | 70 |
20 | CASTRILLO Jaime | 65 |
21 | ULISSI Diego | 63 |
22 | EDMONDSON Alex | 75 |
23 | WYNANTS Maarten | 74 |