Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Poels
2
66 kgPorte
3
62 kgBennett
4
58 kgElissonde
5
52 kgBoaro
6
64 kgZakharov
7
70 kgImpey
8
72 kgWoods
9
62 kgDennis
11
72 kgHamilton
12
70 kgCarretero
13
67 kgChevrier
14
56 kgSánchez
16
73 kgO'Connor
17
67 kgBevin
18
75 kgWhelan
19
64 kgvan Baarle
21
78 kgStorer
22
63 kgOss
23
75 kgDlamini
24
66 kg
2
66 kgPorte
3
62 kgBennett
4
58 kgElissonde
5
52 kgBoaro
6
64 kgZakharov
7
70 kgImpey
8
72 kgWoods
9
62 kgDennis
11
72 kgHamilton
12
70 kgCarretero
13
67 kgChevrier
14
56 kgSánchez
16
73 kgO'Connor
17
67 kgBevin
18
75 kgWhelan
19
64 kgvan Baarle
21
78 kgStorer
22
63 kgOss
23
75 kgDlamini
24
66 kg
Weight (KG) →
Result →
78
52
2
24
# | Rider | Weight (KG) |
---|---|---|
2 | POELS Wout | 66 |
3 | PORTE Richie | 62 |
4 | BENNETT George | 58 |
5 | ELISSONDE Kenny | 52 |
6 | BOARO Manuele | 64 |
7 | ZAKHAROV Artyom | 70 |
8 | IMPEY Daryl | 72 |
9 | WOODS Michael | 62 |
11 | DENNIS Rohan | 72 |
12 | HAMILTON Chris | 70 |
13 | CARRETERO Héctor | 67 |
14 | CHEVRIER Clément | 56 |
16 | SÁNCHEZ Luis León | 73 |
17 | O'CONNOR Ben | 67 |
18 | BEVIN Patrick | 75 |
19 | WHELAN James | 64 |
21 | VAN BAARLE Dylan | 78 |
22 | STORER Michael | 63 |
23 | OSS Daniel | 75 |
24 | DLAMINI Nic | 66 |