Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Viviani
1
67 kgBevin
2
75 kgBauhaus
3
75 kgSagan
4
78 kgPhilipsen
5
75 kgvan Poppel
6
82 kgHalvorsen
7
69 kgEwan
8
69 kgWalscheid
9
90 kgMareczko
10
67 kgGibbons
11
70 kgZakharov
12
70 kgStorer
14
63 kgSánchez
15
73 kgReijnen
16
63 kgHoelgaard
17
77 kgCastrillo
18
65 kg
1
67 kgBevin
2
75 kgBauhaus
3
75 kgSagan
4
78 kgPhilipsen
5
75 kgvan Poppel
6
82 kgHalvorsen
7
69 kgEwan
8
69 kgWalscheid
9
90 kgMareczko
10
67 kgGibbons
11
70 kgZakharov
12
70 kgStorer
14
63 kgSánchez
15
73 kgReijnen
16
63 kgHoelgaard
17
77 kgCastrillo
18
65 kg
Weight (KG) →
Result →
90
63
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | VIVIANI Elia | 67 |
2 | BEVIN Patrick | 75 |
3 | BAUHAUS Phil | 75 |
4 | SAGAN Peter | 78 |
5 | PHILIPSEN Jasper | 75 |
6 | VAN POPPEL Danny | 82 |
7 | HALVORSEN Kristoffer | 69 |
8 | EWAN Caleb | 69 |
9 | WALSCHEID Max | 90 |
10 | MARECZKO Jakub | 67 |
11 | GIBBONS Ryan | 70 |
12 | ZAKHAROV Artyom | 70 |
14 | STORER Michael | 63 |
15 | SÁNCHEZ Luis León | 73 |
16 | REIJNEN Kiel | 63 |
17 | HOELGAARD Daniel | 77 |
18 | CASTRILLO Jaime | 65 |