Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Sivakov
1
70 kgBuitrago
2
59 kgDrizners
3
70 kgStork
4
65 kgStorer
5
63 kgLópez
6
60 kgBattistella
7
67 kgHollmann
8
70 kgAlmeida
9
63 kgRutsch
10
82 kgPhilipsen
11
75 kgKanter
12
68 kgBjerg
13
78 kgJenner
14
64 kgSchelling
15
66 kgRies
16
67 kgDainese
17
70 kgScott
18
80 kg
1
70 kgBuitrago
2
59 kgDrizners
3
70 kgStork
4
65 kgStorer
5
63 kgLópez
6
60 kgBattistella
7
67 kgHollmann
8
70 kgAlmeida
9
63 kgRutsch
10
82 kgPhilipsen
11
75 kgKanter
12
68 kgBjerg
13
78 kgJenner
14
64 kgSchelling
15
66 kgRies
16
67 kgDainese
17
70 kgScott
18
80 kg
Weight (KG) →
Result →
82
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | SIVAKOV Pavel | 70 |
2 | BUITRAGO Santiago | 59 |
3 | DRIZNERS Jarrad | 70 |
4 | STORK Florian | 65 |
5 | STORER Michael | 63 |
6 | LÓPEZ Juan Pedro | 60 |
7 | BATTISTELLA Samuele | 67 |
8 | HOLLMANN Juri | 70 |
9 | ALMEIDA João | 63 |
10 | RUTSCH Jonas | 82 |
11 | PHILIPSEN Jasper | 75 |
12 | KANTER Max | 68 |
13 | BJERG Mikkel | 78 |
14 | JENNER Samuel | 64 |
15 | SCHELLING Ide | 66 |
16 | RIES Michel | 67 |
17 | DAINESE Alberto | 70 |
18 | SCOTT Cameron | 80 |