Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Bauhaus
1
75 kgMatthews
2
72 kgEwan
3
69 kgCovi
4
66 kgPenhoët
5
64 kgLiepiņš
6
67 kgPage
7
71 kgHofstetter
8
66 kgJones
9
82 kgThijssen
10
74 kgMayrhofer
11
70 kgCoquard
12
59 kgStrong
13
63 kgPeters
14
72 kgvan Dijke
15
74 kgSteimle
16
73 kgHayter
17
70 kgHeiduk
18
70 kg
1
75 kgMatthews
2
72 kgEwan
3
69 kgCovi
4
66 kgPenhoët
5
64 kgLiepiņš
6
67 kgPage
7
71 kgHofstetter
8
66 kgJones
9
82 kgThijssen
10
74 kgMayrhofer
11
70 kgCoquard
12
59 kgStrong
13
63 kgPeters
14
72 kgvan Dijke
15
74 kgSteimle
16
73 kgHayter
17
70 kgHeiduk
18
70 kg
Weight (KG) →
Result →
82
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BAUHAUS Phil | 75 |
2 | MATTHEWS Michael | 72 |
3 | EWAN Caleb | 69 |
4 | COVI Alessandro | 66 |
5 | PENHOËT Paul | 64 |
6 | LIEPIŅŠ Emīls | 67 |
7 | PAGE Hugo | 71 |
8 | HOFSTETTER Hugo | 66 |
9 | JONES Taj | 82 |
10 | THIJSSEN Gerben | 74 |
11 | MAYRHOFER Marius | 70 |
12 | COQUARD Bryan | 59 |
13 | STRONG Corbin | 63 |
14 | PETERS Nans | 72 |
15 | VAN DIJKE Tim | 74 |
16 | STEIMLE Jannik | 73 |
17 | HAYTER Ethan | 70 |
18 | HEIDUK Kim | 70 |