Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Welsford
1
79 kgBauhaus
2
75 kgGirmay
3
70 kgEwan
4
69 kgNarváez
5
65 kgKanter
6
68 kgStrong
7
63 kgvan Poppel
8
82 kgMihkels
9
75 kgVacek
10
75 kgHodeg
11
76 kgFretin
12
70 kgZimmermann
13
70 kgFisher-Black
14
69 kgGarcía Cortina
15
77 kgBarré
16
68 kgEddy
17
79 kgAllegaert
18
70 kg
1
79 kgBauhaus
2
75 kgGirmay
3
70 kgEwan
4
69 kgNarváez
5
65 kgKanter
6
68 kgStrong
7
63 kgvan Poppel
8
82 kgMihkels
9
75 kgVacek
10
75 kgHodeg
11
76 kgFretin
12
70 kgZimmermann
13
70 kgFisher-Black
14
69 kgGarcía Cortina
15
77 kgBarré
16
68 kgEddy
17
79 kgAllegaert
18
70 kg
Weight (KG) →
Result →
82
63
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | WELSFORD Sam | 79 |
2 | BAUHAUS Phil | 75 |
3 | GIRMAY Biniam | 70 |
4 | EWAN Caleb | 69 |
5 | NARVÁEZ Jhonatan | 65 |
6 | KANTER Max | 68 |
7 | STRONG Corbin | 63 |
8 | VAN POPPEL Danny | 82 |
9 | MIHKELS Madis | 75 |
10 | VACEK Mathias | 75 |
11 | HODEG Álvaro José | 76 |
12 | FRETIN Milan | 70 |
13 | ZIMMERMANN Georg | 70 |
14 | FISHER-BLACK Finn | 69 |
15 | GARCÍA CORTINA Iván | 77 |
16 | BARRÉ Louis | 68 |
17 | EDDY Patrick | 79 |
18 | ALLEGAERT Piet | 70 |