Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 172
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Barry
1
77 kgSchaper
2
69 kgMolenaar
6
68 kgLarsson
7
60 kgRemijn
9
68 kgZomermaand
10
67 kgVan Kerckhove
13
70 kgScheldeman
14
66 kgRooni
16
72 kgQuint
17
75 kgVan den Broek
19
69 kgVerstraete
20
59 kgNijst
38
65 kgHawker
39
62 kgSparfel
40
59 kgSmit
58
59 kgO'Brien
71
59 kgvan Keulen
88
71 kgHernandez
89
54 kgTammepuu
92
68 kg
1
77 kgSchaper
2
69 kgMolenaar
6
68 kgLarsson
7
60 kgRemijn
9
68 kgZomermaand
10
67 kgVan Kerckhove
13
70 kgScheldeman
14
66 kgRooni
16
72 kgQuint
17
75 kgVan den Broek
19
69 kgVerstraete
20
59 kgNijst
38
65 kgHawker
39
62 kgSparfel
40
59 kgSmit
58
59 kgO'Brien
71
59 kgvan Keulen
88
71 kgHernandez
89
54 kgTammepuu
92
68 kg
Weight (KG) →
Result →
77
54
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | BARRY Ashlin | 77 |
2 | SCHAPER Joeri | 69 |
6 | MOLENAAR Ko | 68 |
7 | LARSSON Linus | 60 |
9 | REMIJN Senna | 68 |
10 | ZOMERMAAND Jurgen | 67 |
13 | VAN KERCKHOVE Matisse | 70 |
14 | SCHELDEMAN Xander | 66 |
16 | ROONI Ron | 72 |
17 | QUINT Antoine | 75 |
19 | VAN DEN BROEK Axel | 69 |
20 | VERSTRAETE Jenthe | 59 |
38 | NIJST Michiel | 65 |
39 | HAWKER Finlay | 62 |
40 | SPARFEL Aubin | 59 |
58 | SMIT Stan | 59 |
71 | O'BRIEN Finn | 59 |
88 | VAN KEULEN Wessel | 71 |
89 | HERNANDEZ Jan | 54 |
92 | TAMMEPUU Riko | 68 |