Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 126
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Schaper
2
69 kgBarry
4
77 kgScheldeman
5
66 kgMolenaar
9
68 kgVan den Broek
10
69 kgLarsson
14
60 kgSparfel
15
59 kgZomermaand
16
67 kgVerstraete
19
59 kgHawker
23
62 kgVan Kerckhove
24
70 kgQuint
25
75 kgRemijn
27
68 kgRooni
37
72 kgSmit
60
59 kgNijst
62
65 kgHernandez
76
54 kgvan Keulen
79
71 kgO'Brien
81
59 kgTammepuu
91
68 kg
2
69 kgBarry
4
77 kgScheldeman
5
66 kgMolenaar
9
68 kgVan den Broek
10
69 kgLarsson
14
60 kgSparfel
15
59 kgZomermaand
16
67 kgVerstraete
19
59 kgHawker
23
62 kgVan Kerckhove
24
70 kgQuint
25
75 kgRemijn
27
68 kgRooni
37
72 kgSmit
60
59 kgNijst
62
65 kgHernandez
76
54 kgvan Keulen
79
71 kgO'Brien
81
59 kgTammepuu
91
68 kg
Weight (KG) →
Result →
77
54
2
91
# | Rider | Weight (KG) |
---|---|---|
2 | SCHAPER Joeri | 69 |
4 | BARRY Ashlin | 77 |
5 | SCHELDEMAN Xander | 66 |
9 | MOLENAAR Ko | 68 |
10 | VAN DEN BROEK Axel | 69 |
14 | LARSSON Linus | 60 |
15 | SPARFEL Aubin | 59 |
16 | ZOMERMAAND Jurgen | 67 |
19 | VERSTRAETE Jenthe | 59 |
23 | HAWKER Finlay | 62 |
24 | VAN KERCKHOVE Matisse | 70 |
25 | QUINT Antoine | 75 |
27 | REMIJN Senna | 68 |
37 | ROONI Ron | 72 |
60 | SMIT Stan | 59 |
62 | NIJST Michiel | 65 |
76 | HERNANDEZ Jan | 54 |
79 | VAN KEULEN Wessel | 71 |
81 | O'BRIEN Finn | 59 |
91 | TAMMEPUU Riko | 68 |