Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Hänninen
1
60 kgTaaramäe
2
68 kgBouchard
3
63 kgFernández
4
69 kgGuillonnet
5
69 kgRochas
6
51 kgMadrazo
7
61 kgSicard
8
63 kgPacher
9
62 kgMoreno
10
59 kgCalmejane
11
70 kgBrenans
12
63 kgJarnet
13
63 kgCourteille
18
62 kgDe Rossi
19
70 kgVan Niekerk
23
64 kgBellicaud
25
56 kgGoubert
26
61 kgEl Fares
30
62 kgBennett
33
58 kgQuéméneur
36
67 kgHivert
38
62 kg
1
60 kgTaaramäe
2
68 kgBouchard
3
63 kgFernández
4
69 kgGuillonnet
5
69 kgRochas
6
51 kgMadrazo
7
61 kgSicard
8
63 kgPacher
9
62 kgMoreno
10
59 kgCalmejane
11
70 kgBrenans
12
63 kgJarnet
13
63 kgCourteille
18
62 kgDe Rossi
19
70 kgVan Niekerk
23
64 kgBellicaud
25
56 kgGoubert
26
61 kgEl Fares
30
62 kgBennett
33
58 kgQuéméneur
36
67 kgHivert
38
62 kg
Weight (KG) →
Result →
70
51
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | HÄNNINEN Jaakko | 60 |
2 | TAARAMÄE Rein | 68 |
3 | BOUCHARD Geoffrey | 63 |
4 | FERNÁNDEZ Delio | 69 |
5 | GUILLONNET Adrien | 69 |
6 | ROCHAS Rémy | 51 |
7 | MADRAZO Ángel | 61 |
8 | SICARD Romain | 63 |
9 | PACHER Quentin | 62 |
10 | MORENO Adrià | 59 |
11 | CALMEJANE Lilian | 70 |
12 | BRENANS Emile | 63 |
13 | JARNET Maxime | 63 |
18 | COURTEILLE Arnaud | 62 |
19 | DE ROSSI Lucas | 70 |
23 | VAN NIEKERK Morné | 64 |
25 | BELLICAUD Jeremy | 56 |
26 | GOUBERT Jean | 61 |
30 | EL FARES Julien | 62 |
33 | BENNETT Stéfan | 58 |
36 | QUÉMÉNEUR Perrig | 67 |
38 | HIVERT Jonathan | 62 |