Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Keizer
1
72 kgGaudin
2
85 kgOffredo
3
69 kgMollema
4
64 kgVandewalle
5
74 kgPardini
6
68 kgKruijswijk
7
63 kgSimon
8
65 kgGallopin
9
69 kgFeillu
10
69 kgVachon
12
65 kgLaborie
15
67 kgRossetto
19
68 kgGhyselinck
22
74 kgNeirynck
23
78 kgVantomme
27
63 kgBonnafond
32
68 kgvan Genechten
33
67 kgvan Poppel
40
78 kgBlot
42
71 kgKneisky
44
68 kgDevillers
46
62 kgLamoisson
55
69 kg
1
72 kgGaudin
2
85 kgOffredo
3
69 kgMollema
4
64 kgVandewalle
5
74 kgPardini
6
68 kgKruijswijk
7
63 kgSimon
8
65 kgGallopin
9
69 kgFeillu
10
69 kgVachon
12
65 kgLaborie
15
67 kgRossetto
19
68 kgGhyselinck
22
74 kgNeirynck
23
78 kgVantomme
27
63 kgBonnafond
32
68 kgvan Genechten
33
67 kgvan Poppel
40
78 kgBlot
42
71 kgKneisky
44
68 kgDevillers
46
62 kgLamoisson
55
69 kg
Weight (KG) →
Result →
85
62
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | KEIZER Martijn | 72 |
2 | GAUDIN Damien | 85 |
3 | OFFREDO Yoann | 69 |
4 | MOLLEMA Bauke | 64 |
5 | VANDEWALLE Kristof | 74 |
6 | PARDINI Olivier | 68 |
7 | KRUIJSWIJK Steven | 63 |
8 | SIMON Julien | 65 |
9 | GALLOPIN Tony | 69 |
10 | FEILLU Brice | 69 |
12 | VACHON Florian | 65 |
15 | LABORIE Christophe | 67 |
19 | ROSSETTO Stéphane | 68 |
22 | GHYSELINCK Jan | 74 |
23 | NEIRYNCK Stijn | 78 |
27 | VANTOMME Maxime | 63 |
32 | BONNAFOND Guillaume | 68 |
33 | VAN GENECHTEN Jonas | 67 |
40 | VAN POPPEL Boy | 78 |
42 | BLOT Guillaume | 71 |
44 | KNEISKY Morgan | 68 |
46 | DEVILLERS Gilles | 62 |
55 | LAMOISSON Morgan | 69 |