Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vachon
1
65 kgGaudin
2
85 kgNeirynck
6
78 kgPardini
7
68 kgVantomme
8
63 kgOffredo
9
69 kgSimon
11
65 kgvan Genechten
17
67 kgMollema
18
64 kgGallopin
19
69 kgKeizer
20
72 kgKruijswijk
23
63 kgVandewalle
24
74 kgLaborie
25
67 kgBonnafond
27
68 kgFeillu
30
69 kgRossetto
32
68 kgGhyselinck
38
74 kgLamoisson
47
69 kgvan Poppel
49
78 kgBlot
52
71 kgKneisky
53
68 kgDevillers
56
62 kg
1
65 kgGaudin
2
85 kgNeirynck
6
78 kgPardini
7
68 kgVantomme
8
63 kgOffredo
9
69 kgSimon
11
65 kgvan Genechten
17
67 kgMollema
18
64 kgGallopin
19
69 kgKeizer
20
72 kgKruijswijk
23
63 kgVandewalle
24
74 kgLaborie
25
67 kgBonnafond
27
68 kgFeillu
30
69 kgRossetto
32
68 kgGhyselinck
38
74 kgLamoisson
47
69 kgvan Poppel
49
78 kgBlot
52
71 kgKneisky
53
68 kgDevillers
56
62 kg
Weight (KG) →
Result →
85
62
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | VACHON Florian | 65 |
2 | GAUDIN Damien | 85 |
6 | NEIRYNCK Stijn | 78 |
7 | PARDINI Olivier | 68 |
8 | VANTOMME Maxime | 63 |
9 | OFFREDO Yoann | 69 |
11 | SIMON Julien | 65 |
17 | VAN GENECHTEN Jonas | 67 |
18 | MOLLEMA Bauke | 64 |
19 | GALLOPIN Tony | 69 |
20 | KEIZER Martijn | 72 |
23 | KRUIJSWIJK Steven | 63 |
24 | VANDEWALLE Kristof | 74 |
25 | LABORIE Christophe | 67 |
27 | BONNAFOND Guillaume | 68 |
30 | FEILLU Brice | 69 |
32 | ROSSETTO Stéphane | 68 |
38 | GHYSELINCK Jan | 74 |
47 | LAMOISSON Morgan | 69 |
49 | VAN POPPEL Boy | 78 |
52 | BLOT Guillaume | 71 |
53 | KNEISKY Morgan | 68 |
56 | DEVILLERS Gilles | 62 |