Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 84
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
van Winden
1
70 kgDegenkolb
2
82 kgCousin
3
74 kgvan Zandbeek
5
72 kgKeizer
6
72 kgKadri
7
66 kgMatheou
13
73 kgMalacarne
14
73 kgEdet
15
60 kgJodts
16
74 kgGmelich Meijling
17
77 kgNauleau
23
67 kgHardy
29
62 kgPantano
31
61 kgWallays
35
77 kgCourteille
38
62 kgKreder
43
67 kgRomero
44
55 kgSinkeldam
49
77 kgFouchard
57
74 kgAdams
59
63 kg
1
70 kgDegenkolb
2
82 kgCousin
3
74 kgvan Zandbeek
5
72 kgKeizer
6
72 kgKadri
7
66 kgMatheou
13
73 kgMalacarne
14
73 kgEdet
15
60 kgJodts
16
74 kgGmelich Meijling
17
77 kgNauleau
23
67 kgHardy
29
62 kgPantano
31
61 kgWallays
35
77 kgCourteille
38
62 kgKreder
43
67 kgRomero
44
55 kgSinkeldam
49
77 kgFouchard
57
74 kgAdams
59
63 kg
Weight (KG) →
Result →
82
55
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | VAN WINDEN Dennis | 70 |
2 | DEGENKOLB John | 82 |
3 | COUSIN Jérôme | 74 |
5 | VAN ZANDBEEK Ronan | 72 |
6 | KEIZER Martijn | 72 |
7 | KADRI Blel | 66 |
13 | MATHEOU Romain | 73 |
14 | MALACARNE Gael | 73 |
15 | EDET Nicolas | 60 |
16 | JODTS Sven | 74 |
17 | GMELICH MEIJLING Jarno | 77 |
23 | NAULEAU Bryan | 67 |
29 | HARDY Romain | 62 |
31 | PANTANO Jarlinson | 61 |
35 | WALLAYS Jelle | 77 |
38 | COURTEILLE Arnaud | 62 |
43 | KREDER Michel | 67 |
44 | ROMERO Jeffry | 55 |
49 | SINKELDAM Ramon | 77 |
57 | FOUCHARD Julien | 74 |
59 | ADAMS Joeri | 63 |