Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Jodts
1
74 kgvan Winden
2
70 kgDegenkolb
3
82 kgMatheou
4
73 kgCourteille
7
62 kgRomero
8
55 kgCousin
10
74 kgvan Zandbeek
12
72 kgEdet
14
60 kgWallays
16
77 kgKadri
17
66 kgNauleau
24
67 kgKeizer
25
72 kgMalacarne
26
73 kgGmelich Meijling
32
77 kgKreder
38
67 kgHardy
39
62 kgPantano
41
61 kgSinkeldam
46
77 kgFouchard
58
74 kgAdams
65
63 kg
1
74 kgvan Winden
2
70 kgDegenkolb
3
82 kgMatheou
4
73 kgCourteille
7
62 kgRomero
8
55 kgCousin
10
74 kgvan Zandbeek
12
72 kgEdet
14
60 kgWallays
16
77 kgKadri
17
66 kgNauleau
24
67 kgKeizer
25
72 kgMalacarne
26
73 kgGmelich Meijling
32
77 kgKreder
38
67 kgHardy
39
62 kgPantano
41
61 kgSinkeldam
46
77 kgFouchard
58
74 kgAdams
65
63 kg
Weight (KG) →
Result →
82
55
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | JODTS Sven | 74 |
2 | VAN WINDEN Dennis | 70 |
3 | DEGENKOLB John | 82 |
4 | MATHEOU Romain | 73 |
7 | COURTEILLE Arnaud | 62 |
8 | ROMERO Jeffry | 55 |
10 | COUSIN Jérôme | 74 |
12 | VAN ZANDBEEK Ronan | 72 |
14 | EDET Nicolas | 60 |
16 | WALLAYS Jelle | 77 |
17 | KADRI Blel | 66 |
24 | NAULEAU Bryan | 67 |
25 | KEIZER Martijn | 72 |
26 | MALACARNE Gael | 73 |
32 | GMELICH MEIJLING Jarno | 77 |
38 | KREDER Michel | 67 |
39 | HARDY Romain | 62 |
41 | PANTANO Jarlinson | 61 |
46 | SINKELDAM Ramon | 77 |
58 | FOUCHARD Julien | 74 |
65 | ADAMS Joeri | 63 |