Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ledanois
1
67 kgBelda
2
53 kgLatour
3
66 kgBaldo
4
73 kgBille
5
67 kgDueñas
6
61 kgSaint-Martin
8
66 kgDi Grégorio
9
67 kgFrank
11
64 kgJauregui
12
60 kgKluge
13
83 kgBoudat
15
70 kgGuzmán
18
69 kgLienhard
20
73 kgPellaud
23
70 kgNavarro
28
62 kgAït El Abdia
31
66 kgLeveau
33
67 kgHonig
35
61 kgMilán
37
67 kg
1
67 kgBelda
2
53 kgLatour
3
66 kgBaldo
4
73 kgBille
5
67 kgDueñas
6
61 kgSaint-Martin
8
66 kgDi Grégorio
9
67 kgFrank
11
64 kgJauregui
12
60 kgKluge
13
83 kgBoudat
15
70 kgGuzmán
18
69 kgLienhard
20
73 kgPellaud
23
70 kgNavarro
28
62 kgAït El Abdia
31
66 kgLeveau
33
67 kgHonig
35
61 kgMilán
37
67 kg
Weight (KG) →
Result →
83
53
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | LEDANOIS Kévin | 67 |
2 | BELDA David | 53 |
3 | LATOUR Pierre | 66 |
4 | BALDO Nicolas | 73 |
5 | BILLE Gaëtan | 67 |
6 | DUEÑAS Moisés | 61 |
8 | SAINT-MARTIN Clément | 66 |
9 | DI GRÉGORIO Rémy | 67 |
11 | FRANK Mathias | 64 |
12 | JAUREGUI Quentin | 60 |
13 | KLUGE Roger | 83 |
15 | BOUDAT Thomas | 70 |
18 | GUZMÁN William | 69 |
20 | LIENHARD Fabian | 73 |
23 | PELLAUD Simon | 70 |
28 | NAVARRO Royner | 62 |
31 | AÏT EL ABDIA Anass | 66 |
33 | LEVEAU Jérémy | 67 |
35 | HONIG Reinier | 61 |
37 | MILÁN Diego | 67 |