Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Fédrigo
1
66 kgSinkewitz
2
63 kgLhuillier
3
69 kgElmiger
4
73 kgSassone
5
75 kgWillems
6
67 kgMenchov
7
65 kgPetrov
8
70 kgCasar
9
63 kgCheula
10
62 kgMartínez
11
70 kgPlaza
12
77 kgFritsch
13
65 kgCooke
14
75 kgRutkiewicz
15
66 kgBuffaz
16
64 kgDuclos-Lassalle
18
63 kgFörster
20
83 kg
1
66 kgSinkewitz
2
63 kgLhuillier
3
69 kgElmiger
4
73 kgSassone
5
75 kgWillems
6
67 kgMenchov
7
65 kgPetrov
8
70 kgCasar
9
63 kgCheula
10
62 kgMartínez
11
70 kgPlaza
12
77 kgFritsch
13
65 kgCooke
14
75 kgRutkiewicz
15
66 kgBuffaz
16
64 kgDuclos-Lassalle
18
63 kgFörster
20
83 kg
Weight (KG) →
Result →
83
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | FÉDRIGO Pierrick | 66 |
2 | SINKEWITZ Patrik | 63 |
3 | LHUILLIER Régis | 69 |
4 | ELMIGER Martin | 73 |
5 | SASSONE Robert | 75 |
6 | WILLEMS Frederik | 67 |
7 | MENCHOV Denis | 65 |
8 | PETROV Evgeni | 70 |
9 | CASAR Sandy | 63 |
10 | CHEULA Giampaolo | 62 |
11 | MARTÍNEZ Egoi | 70 |
12 | PLAZA Rubén | 77 |
13 | FRITSCH Nicolas | 65 |
14 | COOKE Baden | 75 |
15 | RUTKIEWICZ Marek | 66 |
16 | BUFFAZ Mickaël | 64 |
18 | DUCLOS-LASSALLE Hervé | 63 |
20 | FÖRSTER Robert | 83 |