Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Lequatre
2
64 kgMonfort
3
66 kgHary
4
68 kgLongo Borghini
5
76 kgMéderel
6
59 kgMcLeod
7
66 kgMayoz
8
62 kgde Kort
9
69 kgKohl
10
61 kgDuret
11
62 kgGeslin
12
68 kgCésar Veloso
13
69 kgBerthou
14
72 kgVastaranta
15
63 kgCoyot
16
76 kgDe Vocht
17
78 kgDockx
18
64 kgValentin
19
69 kgVan Hecke
21
69 kgHeijboer
22
78 kgCoutouly
23
72 kgRiblon
24
65 kg
2
64 kgMonfort
3
66 kgHary
4
68 kgLongo Borghini
5
76 kgMéderel
6
59 kgMcLeod
7
66 kgMayoz
8
62 kgde Kort
9
69 kgKohl
10
61 kgDuret
11
62 kgGeslin
12
68 kgCésar Veloso
13
69 kgBerthou
14
72 kgVastaranta
15
63 kgCoyot
16
76 kgDe Vocht
17
78 kgDockx
18
64 kgValentin
19
69 kgVan Hecke
21
69 kgHeijboer
22
78 kgCoutouly
23
72 kgRiblon
24
65 kg
Weight (KG) →
Result →
78
59
2
24
# | Rider | Weight (KG) |
---|---|---|
2 | LEQUATRE Geoffroy | 64 |
3 | MONFORT Maxime | 66 |
4 | HARY Maryan | 68 |
5 | LONGO BORGHINI Paolo | 76 |
6 | MÉDEREL Maxime | 59 |
7 | MCLEOD Ian | 66 |
8 | MAYOZ Iban | 62 |
9 | DE KORT Koen | 69 |
10 | KOHL Bernhard | 61 |
11 | DURET Sébastien | 62 |
12 | GESLIN Anthony | 68 |
13 | CÉSAR VELOSO Gustavo | 69 |
14 | BERTHOU Eric | 72 |
15 | VASTARANTA Jukka | 63 |
16 | COYOT Arnaud | 76 |
17 | DE VOCHT Wim | 78 |
18 | DOCKX Bart | 64 |
19 | VALENTIN Tristan | 69 |
21 | VAN HECKE Preben | 69 |
22 | HEIJBOER Mathieu | 78 |
23 | COUTOULY Cédric | 72 |
24 | RIBLON Christophe | 65 |