Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Sijmens
2
69 kgRous
3
70 kgFédrigo
4
66 kgNaibo
5
62 kgKrivtsov
6
72 kgDumoulin
7
57 kgle Boulanger
8
70 kgSalmon
9
60 kgRoy
10
70 kgLagutin
11
68 kgJoly
12
74 kgAgnolutto
13
69 kgHushovd
15
83 kgMoncoutié
16
69 kgMandri
17
66 kgVerheyen
18
68 kgGuesdon
19
73 kgMéderel
20
59 kgMarino
21
65 kgPortal
22
70 kgCoutouly
23
72 kgRinero
24
65 kgBertagnolli
26
63 kg
2
69 kgRous
3
70 kgFédrigo
4
66 kgNaibo
5
62 kgKrivtsov
6
72 kgDumoulin
7
57 kgle Boulanger
8
70 kgSalmon
9
60 kgRoy
10
70 kgLagutin
11
68 kgJoly
12
74 kgAgnolutto
13
69 kgHushovd
15
83 kgMoncoutié
16
69 kgMandri
17
66 kgVerheyen
18
68 kgGuesdon
19
73 kgMéderel
20
59 kgMarino
21
65 kgPortal
22
70 kgCoutouly
23
72 kgRinero
24
65 kgBertagnolli
26
63 kg
Weight (KG) →
Result →
83
57
2
26
# | Rider | Weight (KG) |
---|---|---|
2 | SIJMENS Nico | 69 |
3 | ROUS Didier | 70 |
4 | FÉDRIGO Pierrick | 66 |
5 | NAIBO Carl | 62 |
6 | KRIVTSOV Yuriy | 72 |
7 | DUMOULIN Samuel | 57 |
8 | LE BOULANGER Yoann | 70 |
9 | SALMON Benoît | 60 |
10 | ROY Jérémy | 70 |
11 | LAGUTIN Sergey | 68 |
12 | JOLY Sébastien | 74 |
13 | AGNOLUTTO Christophe | 69 |
15 | HUSHOVD Thor | 83 |
16 | MONCOUTIÉ David | 69 |
17 | MANDRI René | 66 |
18 | VERHEYEN Geert | 68 |
19 | GUESDON Frédéric | 73 |
20 | MÉDEREL Maxime | 59 |
21 | MARINO Jean-Marc | 65 |
22 | PORTAL Nicolas | 70 |
23 | COUTOULY Cédric | 72 |
24 | RINERO Christophe | 65 |
26 | BERTAGNOLLI Leonardo | 63 |