Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Domont
1
65 kgDe Greef
2
77 kgQuéméneur
3
67 kgMadrazo
5
61 kgMolard
6
62 kgLeukemans
7
67 kgVachon
8
65 kgGuillou
9
71 kgBackaert
10
78 kgGonçalves
11
70 kgTulik
12
64 kgChavanel
13
73 kgLaborie
14
67 kgDuque
15
59 kgDelaplace
16
65 kgDelage
17
70 kgLecuisinier
18
65 kgTurgis
19
63 kgReza
20
71 kgSaint-Martin
21
66 kg
1
65 kgDe Greef
2
77 kgQuéméneur
3
67 kgMadrazo
5
61 kgMolard
6
62 kgLeukemans
7
67 kgVachon
8
65 kgGuillou
9
71 kgBackaert
10
78 kgGonçalves
11
70 kgTulik
12
64 kgChavanel
13
73 kgLaborie
14
67 kgDuque
15
59 kgDelaplace
16
65 kgDelage
17
70 kgLecuisinier
18
65 kgTurgis
19
63 kgReza
20
71 kgSaint-Martin
21
66 kg
Weight (KG) →
Result →
78
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DOMONT Axel | 65 |
2 | DE GREEF Francis | 77 |
3 | QUÉMÉNEUR Perrig | 67 |
5 | MADRAZO Ángel | 61 |
6 | MOLARD Rudy | 62 |
7 | LEUKEMANS Björn | 67 |
8 | VACHON Florian | 65 |
9 | GUILLOU Florian | 71 |
10 | BACKAERT Frederik | 78 |
11 | GONÇALVES José | 70 |
12 | TULIK Angélo | 64 |
13 | CHAVANEL Sylvain | 73 |
14 | LABORIE Christophe | 67 |
15 | DUQUE Leonardo Fabio | 59 |
16 | DELAPLACE Anthony | 65 |
17 | DELAGE Mickaël | 70 |
18 | LECUISINIER Pierre-Henri | 65 |
19 | TURGIS Jimmy | 63 |
20 | REZA Kévin | 71 |
21 | SAINT-MARTIN Clément | 66 |