Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Combaud
1
63 kgCecchinel
2
69 kgBerlato
3
60 kgPlanckaert
4
65 kgMinnaard
5
65 kgvan Empel
6
64 kgMolard
7
62 kgLevarlet
8
67 kgFeillu
9
69 kgDupont
10
57 kgMartinez
11
69 kgVachon
12
65 kgBonnafond
13
68 kgDomont
15
65 kgPacher
16
62 kgSaint-Martin
17
66 kgAntomarchi
18
70 kgNauleau
19
67 kg
1
63 kgCecchinel
2
69 kgBerlato
3
60 kgPlanckaert
4
65 kgMinnaard
5
65 kgvan Empel
6
64 kgMolard
7
62 kgLevarlet
8
67 kgFeillu
9
69 kgDupont
10
57 kgMartinez
11
69 kgVachon
12
65 kgBonnafond
13
68 kgDomont
15
65 kgPacher
16
62 kgSaint-Martin
17
66 kgAntomarchi
18
70 kgNauleau
19
67 kg
Weight (KG) →
Result →
70
57
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | COMBAUD Romain | 63 |
2 | CECCHINEL Giorgio | 69 |
3 | BERLATO Giacomo | 60 |
4 | PLANCKAERT Baptiste | 65 |
5 | MINNAARD Marco | 65 |
6 | VAN EMPEL Etienne | 64 |
7 | MOLARD Rudy | 62 |
8 | LEVARLET Guillaume | 67 |
9 | FEILLU Brice | 69 |
10 | DUPONT Hubert | 57 |
11 | MARTINEZ Yannick | 69 |
12 | VACHON Florian | 65 |
13 | BONNAFOND Guillaume | 68 |
15 | DOMONT Axel | 65 |
16 | PACHER Quentin | 62 |
17 | SAINT-MARTIN Clément | 66 |
18 | ANTOMARCHI Julien | 70 |
19 | NAULEAU Bryan | 67 |