Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Madouas
1
71 kgUrruty
2
59 kgRota
3
62 kgClaeys
4
77 kgRossetto
5
68 kgBarguil
6
61 kgMartin
7
55 kgGuégan
8
71 kgBoileau
9
57 kgDelettre
10
62 kgCardis
11
72 kgCarisey
12
74 kgZana
13
65 kgDewulf
14
74 kgOurselin
15
70 kgSerrano
16
65 kgMolly
17
61 kgAranburu
18
63 kgUlissi
19
63 kgCovi
20
66 kgFerron
21
67 kgBesson
22
62 kgAmezqueta
23
63 kg
1
71 kgUrruty
2
59 kgRota
3
62 kgClaeys
4
77 kgRossetto
5
68 kgBarguil
6
61 kgMartin
7
55 kgGuégan
8
71 kgBoileau
9
57 kgDelettre
10
62 kgCardis
11
72 kgCarisey
12
74 kgZana
13
65 kgDewulf
14
74 kgOurselin
15
70 kgSerrano
16
65 kgMolly
17
61 kgAranburu
18
63 kgUlissi
19
63 kgCovi
20
66 kgFerron
21
67 kgBesson
22
62 kgAmezqueta
23
63 kg
Weight (KG) →
Result →
77
55
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | MADOUAS Valentin | 71 |
2 | URRUTY Maxime | 59 |
3 | ROTA Lorenzo | 62 |
4 | CLAEYS Dimitri | 77 |
5 | ROSSETTO Stéphane | 68 |
6 | BARGUIL Warren | 61 |
7 | MARTIN Guillaume | 55 |
8 | GUÉGAN Maël | 71 |
9 | BOILEAU Alan | 57 |
10 | DELETTRE Alexandre | 62 |
11 | CARDIS Romain | 72 |
12 | CARISEY Clément | 74 |
13 | ZANA Filippo | 65 |
14 | DEWULF Stan | 74 |
15 | OURSELIN Paul | 70 |
16 | SERRANO Gonzalo | 65 |
17 | MOLLY Kenny | 61 |
18 | ARANBURU Alex | 63 |
19 | ULISSI Diego | 63 |
20 | COVI Alessandro | 66 |
21 | FERRON Valentin | 67 |
22 | BESSON Kevin | 62 |
23 | AMEZQUETA Julen | 63 |