Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Lelay
1
67 kgDe Fauw
2
77 kgKopp
3
68 kgSentjens
4
75 kgRetschke
5
66 kgde Wilde
12
74 kgHervé
13
60 kgLang
14
77 kgCoyot
15
76 kgMutsaars
16
67 kgBaumann
22
72 kgDuclos-Lassalle
29
63 kgRollin
30
83 kgDion
33
65 kgElijzen
35
80 kgDe Weert
37
70 kgRiblon
43
65 kgvan Hummel
44
64 kgFothen
48
71 kg
1
67 kgDe Fauw
2
77 kgKopp
3
68 kgSentjens
4
75 kgRetschke
5
66 kgde Wilde
12
74 kgHervé
13
60 kgLang
14
77 kgCoyot
15
76 kgMutsaars
16
67 kgBaumann
22
72 kgDuclos-Lassalle
29
63 kgRollin
30
83 kgDion
33
65 kgElijzen
35
80 kgDe Weert
37
70 kgRiblon
43
65 kgvan Hummel
44
64 kgFothen
48
71 kg
Weight (KG) →
Result →
83
60
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | LELAY David | 67 |
2 | DE FAUW Dimitri | 77 |
3 | KOPP David | 68 |
4 | SENTJENS Roy | 75 |
5 | RETSCHKE Robert | 66 |
12 | DE WILDE Sjef | 74 |
13 | HERVÉ Cédric | 60 |
14 | LANG Sebastian | 77 |
15 | COYOT Arnaud | 76 |
16 | MUTSAARS Ronald | 67 |
22 | BAUMANN Eric | 72 |
29 | DUCLOS-LASSALLE Hervé | 63 |
30 | ROLLIN Dominique | 83 |
33 | DION Renaud | 65 |
35 | ELIJZEN Michiel | 80 |
37 | DE WEERT Kevin | 70 |
43 | RIBLON Christophe | 65 |
44 | VAN HUMMEL Kenny | 64 |
48 | FOTHEN Markus | 71 |