Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Baumann
1
72 kgDe Fauw
2
77 kgMutsaars
3
67 kgSentjens
4
75 kgHervé
7
60 kgRiblon
10
65 kgDe Weert
13
70 kgLang
14
77 kgKopp
15
68 kgRollin
20
83 kgElijzen
21
80 kgDion
22
65 kgde Wilde
26
74 kgFothen
27
71 kgvan Hummel
30
64 kgDuclos-Lassalle
31
63 kgRetschke
33
66 kgCoyot
43
76 kgLelay
49
67 kg
1
72 kgDe Fauw
2
77 kgMutsaars
3
67 kgSentjens
4
75 kgHervé
7
60 kgRiblon
10
65 kgDe Weert
13
70 kgLang
14
77 kgKopp
15
68 kgRollin
20
83 kgElijzen
21
80 kgDion
22
65 kgde Wilde
26
74 kgFothen
27
71 kgvan Hummel
30
64 kgDuclos-Lassalle
31
63 kgRetschke
33
66 kgCoyot
43
76 kgLelay
49
67 kg
Weight (KG) →
Result →
83
60
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | BAUMANN Eric | 72 |
2 | DE FAUW Dimitri | 77 |
3 | MUTSAARS Ronald | 67 |
4 | SENTJENS Roy | 75 |
7 | HERVÉ Cédric | 60 |
10 | RIBLON Christophe | 65 |
13 | DE WEERT Kevin | 70 |
14 | LANG Sebastian | 77 |
15 | KOPP David | 68 |
20 | ROLLIN Dominique | 83 |
21 | ELIJZEN Michiel | 80 |
22 | DION Renaud | 65 |
26 | DE WILDE Sjef | 74 |
27 | FOTHEN Markus | 71 |
30 | VAN HUMMEL Kenny | 64 |
31 | DUCLOS-LASSALLE Hervé | 63 |
33 | RETSCHKE Robert | 66 |
43 | COYOT Arnaud | 76 |
49 | LELAY David | 67 |