Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Baumann
2
72 kgMutsaars
3
67 kgRiblon
4
65 kgHervé
5
60 kgDion
6
65 kgSentjens
7
75 kgKopp
8
68 kgDe Fauw
9
77 kgLang
12
77 kgCoyot
17
76 kgDe Weert
26
70 kgRetschke
29
66 kgElijzen
31
80 kgLelay
32
67 kgvan Hummel
33
64 kgRollin
38
83 kgde Wilde
40
74 kgDuclos-Lassalle
41
63 kgFothen
43
71 kg
2
72 kgMutsaars
3
67 kgRiblon
4
65 kgHervé
5
60 kgDion
6
65 kgSentjens
7
75 kgKopp
8
68 kgDe Fauw
9
77 kgLang
12
77 kgCoyot
17
76 kgDe Weert
26
70 kgRetschke
29
66 kgElijzen
31
80 kgLelay
32
67 kgvan Hummel
33
64 kgRollin
38
83 kgde Wilde
40
74 kgDuclos-Lassalle
41
63 kgFothen
43
71 kg
Weight (KG) →
Result →
83
60
2
43
# | Rider | Weight (KG) |
---|---|---|
2 | BAUMANN Eric | 72 |
3 | MUTSAARS Ronald | 67 |
4 | RIBLON Christophe | 65 |
5 | HERVÉ Cédric | 60 |
6 | DION Renaud | 65 |
7 | SENTJENS Roy | 75 |
8 | KOPP David | 68 |
9 | DE FAUW Dimitri | 77 |
12 | LANG Sebastian | 77 |
17 | COYOT Arnaud | 76 |
26 | DE WEERT Kevin | 70 |
29 | RETSCHKE Robert | 66 |
31 | ELIJZEN Michiel | 80 |
32 | LELAY David | 67 |
33 | VAN HUMMEL Kenny | 64 |
38 | ROLLIN Dominique | 83 |
40 | DE WILDE Sjef | 74 |
41 | DUCLOS-LASSALLE Hervé | 63 |
43 | FOTHEN Markus | 71 |