Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 139
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Chavanel
1
77 kgGilbert
2
75 kgMondory
3
66 kgCoyot
4
76 kgLequatre
10
64 kgDuclos-Lassalle
13
63 kgGène
19
67 kgRousseau
26
70 kgBonnet
31
80 kgLelay
34
67 kgMartias
37
71 kgKern
40
72 kgRiblon
48
65 kgBodnar
53
68 kgVaugrenard
57
72 kgRenders
60
63 kgKlostergaard
61
69 kgKaggestad
63
66 kgMinard
66
65 kg
1
77 kgGilbert
2
75 kgMondory
3
66 kgCoyot
4
76 kgLequatre
10
64 kgDuclos-Lassalle
13
63 kgGène
19
67 kgRousseau
26
70 kgBonnet
31
80 kgLelay
34
67 kgMartias
37
71 kgKern
40
72 kgRiblon
48
65 kgBodnar
53
68 kgVaugrenard
57
72 kgRenders
60
63 kgKlostergaard
61
69 kgKaggestad
63
66 kgMinard
66
65 kg
Weight (KG) →
Result →
80
63
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | CHAVANEL Sébastien | 77 |
2 | GILBERT Philippe | 75 |
3 | MONDORY Lloyd | 66 |
4 | COYOT Arnaud | 76 |
10 | LEQUATRE Geoffroy | 64 |
13 | DUCLOS-LASSALLE Hervé | 63 |
19 | GÈNE Yohann | 67 |
26 | ROUSSEAU Nicolas | 70 |
31 | BONNET William | 80 |
34 | LELAY David | 67 |
37 | MARTIAS Rony | 71 |
40 | KERN Christophe | 72 |
48 | RIBLON Christophe | 65 |
53 | BODNAR Łukasz | 68 |
57 | VAUGRENARD Benoît | 72 |
60 | RENDERS Sven | 63 |
61 | KLOSTERGAARD Kasper | 69 |
63 | KAGGESTAD Mads | 66 |
66 | MINARD Sébastien | 65 |