Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 45
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Mondory
1
66 kgChavanel
4
77 kgRiblon
7
65 kgDuclos-Lassalle
9
63 kgGilbert
10
75 kgLequatre
13
64 kgRousseau
16
70 kgVaugrenard
20
72 kgLelay
25
67 kgMartias
28
71 kgRenders
37
63 kgBodnar
41
68 kgKaggestad
45
66 kgGène
56
67 kgBonnet
58
80 kgCoyot
59
76 kgKern
60
72 kgKlostergaard
65
69 kg
1
66 kgChavanel
4
77 kgRiblon
7
65 kgDuclos-Lassalle
9
63 kgGilbert
10
75 kgLequatre
13
64 kgRousseau
16
70 kgVaugrenard
20
72 kgLelay
25
67 kgMartias
28
71 kgRenders
37
63 kgBodnar
41
68 kgKaggestad
45
66 kgGène
56
67 kgBonnet
58
80 kgCoyot
59
76 kgKern
60
72 kgKlostergaard
65
69 kg
Weight (KG) →
Result →
80
63
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | MONDORY Lloyd | 66 |
4 | CHAVANEL Sébastien | 77 |
7 | RIBLON Christophe | 65 |
9 | DUCLOS-LASSALLE Hervé | 63 |
10 | GILBERT Philippe | 75 |
13 | LEQUATRE Geoffroy | 64 |
16 | ROUSSEAU Nicolas | 70 |
20 | VAUGRENARD Benoît | 72 |
25 | LELAY David | 67 |
28 | MARTIAS Rony | 71 |
37 | RENDERS Sven | 63 |
41 | BODNAR Łukasz | 68 |
45 | KAGGESTAD Mads | 66 |
56 | GÈNE Yohann | 67 |
58 | BONNET William | 80 |
59 | COYOT Arnaud | 76 |
60 | KERN Christophe | 72 |
65 | KLOSTERGAARD Kasper | 69 |