Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 110
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Gilbert
3
75 kgMondory
4
66 kgChavanel
6
77 kgLequatre
11
64 kgDuclos-Lassalle
14
63 kgCoyot
15
76 kgRiblon
20
65 kgMartias
32
71 kgVaugrenard
41
72 kgBodnar
43
68 kgLelay
44
67 kgKern
45
72 kgKaggestad
51
66 kgGène
53
67 kgKlostergaard
57
69 kgRenders
58
63 kgRousseau
59
70 kg
3
75 kgMondory
4
66 kgChavanel
6
77 kgLequatre
11
64 kgDuclos-Lassalle
14
63 kgCoyot
15
76 kgRiblon
20
65 kgMartias
32
71 kgVaugrenard
41
72 kgBodnar
43
68 kgLelay
44
67 kgKern
45
72 kgKaggestad
51
66 kgGène
53
67 kgKlostergaard
57
69 kgRenders
58
63 kgRousseau
59
70 kg
Weight (KG) →
Result →
77
63
3
59
# | Rider | Weight (KG) |
---|---|---|
3 | GILBERT Philippe | 75 |
4 | MONDORY Lloyd | 66 |
6 | CHAVANEL Sébastien | 77 |
11 | LEQUATRE Geoffroy | 64 |
14 | DUCLOS-LASSALLE Hervé | 63 |
15 | COYOT Arnaud | 76 |
20 | RIBLON Christophe | 65 |
32 | MARTIAS Rony | 71 |
41 | VAUGRENARD Benoît | 72 |
43 | BODNAR Łukasz | 68 |
44 | LELAY David | 67 |
45 | KERN Christophe | 72 |
51 | KAGGESTAD Mads | 66 |
53 | GÈNE Yohann | 67 |
57 | KLOSTERGAARD Kasper | 69 |
58 | RENDERS Sven | 63 |
59 | ROUSSEAU Nicolas | 70 |