Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 54
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Mondory
1
66 kgSiedler
2
75 kgDuclos-Lassalle
16
63 kgBoucher
26
78 kgFothen
29
71 kgBichot
30
67 kgCoutouly
31
72 kgCaethoven
33
67 kgSoutham
34
69 kgKlostergaard
38
69 kgSanchez
45
75 kgStubbe
50
66 kgRousseau
51
70 kgPasseron
52
73 kgDuret
67
62 kgMaaskant
81
76 kgFlens
82
82 kg
1
66 kgSiedler
2
75 kgDuclos-Lassalle
16
63 kgBoucher
26
78 kgFothen
29
71 kgBichot
30
67 kgCoutouly
31
72 kgCaethoven
33
67 kgSoutham
34
69 kgKlostergaard
38
69 kgSanchez
45
75 kgStubbe
50
66 kgRousseau
51
70 kgPasseron
52
73 kgDuret
67
62 kgMaaskant
81
76 kgFlens
82
82 kg
Weight (KG) →
Result →
82
62
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | MONDORY Lloyd | 66 |
2 | SIEDLER Sebastian | 75 |
16 | DUCLOS-LASSALLE Hervé | 63 |
26 | BOUCHER David | 78 |
29 | FOTHEN Markus | 71 |
30 | BICHOT Freddy | 67 |
31 | COUTOULY Cédric | 72 |
33 | CAETHOVEN Steven | 67 |
34 | SOUTHAM Tom | 69 |
38 | KLOSTERGAARD Kasper | 69 |
45 | SANCHEZ Fabien | 75 |
50 | STUBBE Tom | 66 |
51 | ROUSSEAU Nicolas | 70 |
52 | PASSERON Aurélien | 73 |
67 | DURET Sébastien | 62 |
81 | MAASKANT Martijn | 76 |
82 | FLENS Rick | 82 |