Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Georges
2
69 kgRogina
4
70 kgRoelandts
5
78 kgMahorič
6
68 kgMarycz
7
69 kgBlain
9
82 kgGoddaert
10
72 kgBenčík
13
73 kgWestra
14
74 kgCazaux
16
59 kgvan Genechten
17
67 kgDevillers
22
62 kgHegreberg
28
72 kgCraven
34
75 kgLamoisson
35
69 kgVandousselaere
36
71 kgKvasina
37
72 kg
2
69 kgRogina
4
70 kgRoelandts
5
78 kgMahorič
6
68 kgMarycz
7
69 kgBlain
9
82 kgGoddaert
10
72 kgBenčík
13
73 kgWestra
14
74 kgCazaux
16
59 kgvan Genechten
17
67 kgDevillers
22
62 kgHegreberg
28
72 kgCraven
34
75 kgLamoisson
35
69 kgVandousselaere
36
71 kgKvasina
37
72 kg
Weight (KG) →
Result →
82
59
2
37
# | Rider | Weight (KG) |
---|---|---|
2 | GEORGES Sylvain | 69 |
4 | ROGINA Radoslav | 70 |
5 | ROELANDTS Jürgen | 78 |
6 | MAHORIČ Mitja | 68 |
7 | MARYCZ Jarosław | 69 |
9 | BLAIN Alexandre | 82 |
10 | GODDAERT Kristof | 72 |
13 | BENČÍK Petr | 73 |
14 | WESTRA Lieuwe | 74 |
16 | CAZAUX Pierre | 59 |
17 | VAN GENECHTEN Jonas | 67 |
22 | DEVILLERS Gilles | 62 |
28 | HEGREBERG Morten | 72 |
34 | CRAVEN Dan | 75 |
35 | LAMOISSON Morgan | 69 |
36 | VANDOUSSELAERE Sven | 71 |
37 | KVASINA Matija | 72 |