Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Roelandts
2
78 kgWestra
4
74 kgGoddaert
11
72 kgvan Genechten
13
67 kgVandousselaere
14
71 kgMahorič
15
68 kgLamoisson
18
69 kgBlain
20
82 kgHegreberg
27
72 kgDevillers
28
62 kgCazaux
35
59 kgAndrle
36
70 kgKvasina
40
72 kgRogina
41
70 kgGeorges
43
69 kgCraven
45
75 kgMarin
49
67 kgMarycz
58
69 kgKluge
65
83 kgDe Neef
69
75 kgBenčík
75
73 kgMatheou
98
73 kgNaulleau
110
72 kg
2
78 kgWestra
4
74 kgGoddaert
11
72 kgvan Genechten
13
67 kgVandousselaere
14
71 kgMahorič
15
68 kgLamoisson
18
69 kgBlain
20
82 kgHegreberg
27
72 kgDevillers
28
62 kgCazaux
35
59 kgAndrle
36
70 kgKvasina
40
72 kgRogina
41
70 kgGeorges
43
69 kgCraven
45
75 kgMarin
49
67 kgMarycz
58
69 kgKluge
65
83 kgDe Neef
69
75 kgBenčík
75
73 kgMatheou
98
73 kgNaulleau
110
72 kg
Weight (KG) →
Result →
83
59
2
110
# | Rider | Weight (KG) |
---|---|---|
2 | ROELANDTS Jürgen | 78 |
4 | WESTRA Lieuwe | 74 |
11 | GODDAERT Kristof | 72 |
13 | VAN GENECHTEN Jonas | 67 |
14 | VANDOUSSELAERE Sven | 71 |
15 | MAHORIČ Mitja | 68 |
18 | LAMOISSON Morgan | 69 |
20 | BLAIN Alexandre | 82 |
27 | HEGREBERG Morten | 72 |
28 | DEVILLERS Gilles | 62 |
35 | CAZAUX Pierre | 59 |
36 | ANDRLE René | 70 |
40 | KVASINA Matija | 72 |
41 | ROGINA Radoslav | 70 |
43 | GEORGES Sylvain | 69 |
45 | CRAVEN Dan | 75 |
49 | MARIN Matej | 67 |
58 | MARYCZ Jarosław | 69 |
65 | KLUGE Roger | 83 |
69 | DE NEEF Steven | 75 |
75 | BENČÍK Petr | 73 |
98 | MATHEOU Romain | 73 |
110 | NAULLEAU Alexandre | 72 |