Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.3 * weight - 186
This means that on average for every extra kilogram weight a rider loses 3.3 positions in the result.
Clain
2
59 kgDumoulin
6
69 kgFirsanov
7
58 kgPérichon
10
69 kgBreen
14
74 kgVerraes
16
73 kgDillier
18
75 kgBelgy
22
68 kgMironov
26
68 kgReinhardt
35
72 kgVilla
36
71 kgVandousselaere
41
71 kgPorsev
43
80 kgTeychenne
50
68 kgSolomennikov
52
72 kgBarle
53
72 kgNovikov
66
77 kgPatanchon
88
69 kgSanchez
94
75 kgSchets
103
74 kgDe Neef
108
75 kgAhlstrand
113
72 kgDupont
120
72 kg
2
59 kgDumoulin
6
69 kgFirsanov
7
58 kgPérichon
10
69 kgBreen
14
74 kgVerraes
16
73 kgDillier
18
75 kgBelgy
22
68 kgMironov
26
68 kgReinhardt
35
72 kgVilla
36
71 kgVandousselaere
41
71 kgPorsev
43
80 kgTeychenne
50
68 kgSolomennikov
52
72 kgBarle
53
72 kgNovikov
66
77 kgPatanchon
88
69 kgSanchez
94
75 kgSchets
103
74 kgDe Neef
108
75 kgAhlstrand
113
72 kgDupont
120
72 kg
Weight (KG) →
Result →
80
58
2
120
# | Rider | Weight (KG) |
---|---|---|
2 | CLAIN Médéric | 59 |
6 | DUMOULIN Tom | 69 |
7 | FIRSANOV Sergey | 58 |
10 | PÉRICHON Pierre-Luc | 69 |
14 | BREEN Vegard | 74 |
16 | VERRAES Benjamin | 73 |
18 | DILLIER Silvan | 75 |
22 | BELGY Julien | 68 |
26 | MIRONOV Alexander | 68 |
35 | REINHARDT Theo | 72 |
36 | VILLA Romain | 71 |
41 | VANDOUSSELAERE Sven | 71 |
43 | PORSEV Alexander | 80 |
50 | TEYCHENNE Mathieu | 68 |
52 | SOLOMENNIKOV Andrei | 72 |
53 | BARLE Florent | 72 |
66 | NOVIKOV Nikita | 77 |
88 | PATANCHON Fabien | 69 |
94 | SANCHEZ Fabien | 75 |
103 | SCHETS Steve | 74 |
108 | DE NEEF Steven | 75 |
113 | AHLSTRAND Jonas | 72 |
120 | DUPONT Timothy | 72 |