Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Belgy
4
68 kgVerraes
7
73 kgPorsev
9
80 kgReinhardt
14
72 kgBarle
17
72 kgDumoulin
18
69 kgDillier
23
75 kgAhlstrand
24
72 kgDupont
26
72 kgFirsanov
27
58 kgVandousselaere
32
71 kgClain
48
59 kgTeychenne
49
68 kgMironov
51
68 kgPérichon
57
69 kgSolomennikov
60
72 kgNovikov
64
77 kgSanchez
70
75 kgSchets
72
74 kgBreen
85
74 kgVilla
90
71 kgPatanchon
97
69 kgDe Neef
104
75 kg
4
68 kgVerraes
7
73 kgPorsev
9
80 kgReinhardt
14
72 kgBarle
17
72 kgDumoulin
18
69 kgDillier
23
75 kgAhlstrand
24
72 kgDupont
26
72 kgFirsanov
27
58 kgVandousselaere
32
71 kgClain
48
59 kgTeychenne
49
68 kgMironov
51
68 kgPérichon
57
69 kgSolomennikov
60
72 kgNovikov
64
77 kgSanchez
70
75 kgSchets
72
74 kgBreen
85
74 kgVilla
90
71 kgPatanchon
97
69 kgDe Neef
104
75 kg
Weight (KG) →
Result →
80
58
4
104
# | Rider | Weight (KG) |
---|---|---|
4 | BELGY Julien | 68 |
7 | VERRAES Benjamin | 73 |
9 | PORSEV Alexander | 80 |
14 | REINHARDT Theo | 72 |
17 | BARLE Florent | 72 |
18 | DUMOULIN Tom | 69 |
23 | DILLIER Silvan | 75 |
24 | AHLSTRAND Jonas | 72 |
26 | DUPONT Timothy | 72 |
27 | FIRSANOV Sergey | 58 |
32 | VANDOUSSELAERE Sven | 71 |
48 | CLAIN Médéric | 59 |
49 | TEYCHENNE Mathieu | 68 |
51 | MIRONOV Alexander | 68 |
57 | PÉRICHON Pierre-Luc | 69 |
60 | SOLOMENNIKOV Andrei | 72 |
64 | NOVIKOV Nikita | 77 |
70 | SANCHEZ Fabien | 75 |
72 | SCHETS Steve | 74 |
85 | BREEN Vegard | 74 |
90 | VILLA Romain | 71 |
97 | PATANCHON Fabien | 69 |
104 | DE NEEF Steven | 75 |