Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Verraes
2
73 kgPérichon
5
69 kgDupont
14
72 kgMaldonado
17
57 kgMatzka
21
69 kgLamoisson
29
69 kgPacher
39
62 kgNauleau
48
67 kgBenčík
61
73 kgSolomennikov
64
72 kgClain
71
59 kgDe Neef
80
75 kgSuzuki
86
57 kgHatanaka
94
72 kgAbe
97
66 kgBeukeboom
107
88 kgWielinga
125
68 kgSteels
129
78 kg
2
73 kgPérichon
5
69 kgDupont
14
72 kgMaldonado
17
57 kgMatzka
21
69 kgLamoisson
29
69 kgPacher
39
62 kgNauleau
48
67 kgBenčík
61
73 kgSolomennikov
64
72 kgClain
71
59 kgDe Neef
80
75 kgSuzuki
86
57 kgHatanaka
94
72 kgAbe
97
66 kgBeukeboom
107
88 kgWielinga
125
68 kgSteels
129
78 kg
Weight (KG) →
Result →
88
57
2
129
# | Rider | Weight (KG) |
---|---|---|
2 | VERRAES Benjamin | 73 |
5 | PÉRICHON Pierre-Luc | 69 |
14 | DUPONT Timothy | 72 |
17 | MALDONADO Anthony | 57 |
21 | MATZKA Ralf | 69 |
29 | LAMOISSON Morgan | 69 |
39 | PACHER Quentin | 62 |
48 | NAULEAU Bryan | 67 |
61 | BENČÍK Petr | 73 |
64 | SOLOMENNIKOV Andrei | 72 |
71 | CLAIN Médéric | 59 |
80 | DE NEEF Steven | 75 |
86 | SUZUKI Yuzuru | 57 |
94 | HATANAKA Yusuke | 72 |
97 | ABE Takayuki | 66 |
107 | BEUKEBOOM Dion | 88 |
125 | WIELINGA Remmert | 68 |
129 | STEELS Stijn | 78 |