Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 71
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Périchon
1
69 kgDupont
6
72 kgMatzka
10
69 kgVerraes
18
73 kgMaldonado
31
57 kgLamoisson
33
69 kgClain
35
59 kgSuzuki
53
57 kgBenčík
57
73 kgPacher
58
62 kgHatanaka
68
72 kgSteels
76
78 kgSolomennikov
85
72 kgNauleau
88
67 kgWielinga
98
68 kgDe Neef
100
75 kgAbe
104
66 kgBeukeboom
124
88 kg
1
69 kgDupont
6
72 kgMatzka
10
69 kgVerraes
18
73 kgMaldonado
31
57 kgLamoisson
33
69 kgClain
35
59 kgSuzuki
53
57 kgBenčík
57
73 kgPacher
58
62 kgHatanaka
68
72 kgSteels
76
78 kgSolomennikov
85
72 kgNauleau
88
67 kgWielinga
98
68 kgDe Neef
100
75 kgAbe
104
66 kgBeukeboom
124
88 kg
Weight (KG) →
Result →
88
57
1
124
# | Rider | Weight (KG) |
---|---|---|
1 | PÉRICHON Pierre-Luc | 69 |
6 | DUPONT Timothy | 72 |
10 | MATZKA Ralf | 69 |
18 | VERRAES Benjamin | 73 |
31 | MALDONADO Anthony | 57 |
33 | LAMOISSON Morgan | 69 |
35 | CLAIN Médéric | 59 |
53 | SUZUKI Yuzuru | 57 |
57 | BENČÍK Petr | 73 |
58 | PACHER Quentin | 62 |
68 | HATANAKA Yusuke | 72 |
76 | STEELS Stijn | 78 |
85 | SOLOMENNIKOV Andrei | 72 |
88 | NAULEAU Bryan | 67 |
98 | WIELINGA Remmert | 68 |
100 | DE NEEF Steven | 75 |
104 | ABE Takayuki | 66 |
124 | BEUKEBOOM Dion | 88 |