Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Lamoisson
1
69 kgDupont
5
72 kgMaldonado
8
57 kgSuzuki
26
57 kgMatzka
44
69 kgSteels
51
78 kgPacher
57
62 kgSolomennikov
62
72 kgHatanaka
72
72 kgNauleau
81
67 kgBenčík
82
73 kgDe Neef
83
75 kgClain
88
59 kgAbe
93
66 kgBeukeboom
113
88 kgWielinga
116
68 kgPérichon
120
69 kgVerraes
123
73 kg
1
69 kgDupont
5
72 kgMaldonado
8
57 kgSuzuki
26
57 kgMatzka
44
69 kgSteels
51
78 kgPacher
57
62 kgSolomennikov
62
72 kgHatanaka
72
72 kgNauleau
81
67 kgBenčík
82
73 kgDe Neef
83
75 kgClain
88
59 kgAbe
93
66 kgBeukeboom
113
88 kgWielinga
116
68 kgPérichon
120
69 kgVerraes
123
73 kg
Weight (KG) →
Result →
88
57
1
123
# | Rider | Weight (KG) |
---|---|---|
1 | LAMOISSON Morgan | 69 |
5 | DUPONT Timothy | 72 |
8 | MALDONADO Anthony | 57 |
26 | SUZUKI Yuzuru | 57 |
44 | MATZKA Ralf | 69 |
51 | STEELS Stijn | 78 |
57 | PACHER Quentin | 62 |
62 | SOLOMENNIKOV Andrei | 72 |
72 | HATANAKA Yusuke | 72 |
81 | NAULEAU Bryan | 67 |
82 | BENČÍK Petr | 73 |
83 | DE NEEF Steven | 75 |
88 | CLAIN Médéric | 59 |
93 | ABE Takayuki | 66 |
113 | BEUKEBOOM Dion | 88 |
116 | WIELINGA Remmert | 68 |
120 | PÉRICHON Pierre-Luc | 69 |
123 | VERRAES Benjamin | 73 |