Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 102
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Dupont
7
72 kgBeukeboom
15
88 kgPérichon
17
69 kgAbe
20
66 kgSteels
23
78 kgLamoisson
28
69 kgClain
29
59 kgSuzuki
34
57 kgHatanaka
45
72 kgVerraes
48
73 kgMaldonado
61
57 kgDe Neef
62
75 kgSolomennikov
74
72 kgPacher
83
62 kgBenčík
93
73 kgWielinga
94
68 kgNauleau
99
67 kg
7
72 kgBeukeboom
15
88 kgPérichon
17
69 kgAbe
20
66 kgSteels
23
78 kgLamoisson
28
69 kgClain
29
59 kgSuzuki
34
57 kgHatanaka
45
72 kgVerraes
48
73 kgMaldonado
61
57 kgDe Neef
62
75 kgSolomennikov
74
72 kgPacher
83
62 kgBenčík
93
73 kgWielinga
94
68 kgNauleau
99
67 kg
Weight (KG) →
Result →
88
57
7
99
# | Rider | Weight (KG) |
---|---|---|
7 | DUPONT Timothy | 72 |
15 | BEUKEBOOM Dion | 88 |
17 | PÉRICHON Pierre-Luc | 69 |
20 | ABE Takayuki | 66 |
23 | STEELS Stijn | 78 |
28 | LAMOISSON Morgan | 69 |
29 | CLAIN Médéric | 59 |
34 | SUZUKI Yuzuru | 57 |
45 | HATANAKA Yusuke | 72 |
48 | VERRAES Benjamin | 73 |
61 | MALDONADO Anthony | 57 |
62 | DE NEEF Steven | 75 |
74 | SOLOMENNIKOV Andrei | 72 |
83 | PACHER Quentin | 62 |
93 | BENČÍK Petr | 73 |
94 | WIELINGA Remmert | 68 |
99 | NAULEAU Bryan | 67 |