Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 32
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
van der Weijst
1
63 kgMaldonado
2
57 kgBarbero
5
66 kgCapiot
7
69 kgCardis
8
72 kgSchmidt
9
63 kgGuldhammer
11
66 kgVinther
13
68 kgvan Goethem
18
77 kgAsselman
22
69 kgWalscheid
25
90 kgWetterhall
31
70 kgZangerle
34
63 kgKatyrin
36
65 kgReihs
37
75 kgPolnický
38
68 kgBenfatto
39
71 kgEising
40
80 kg
1
63 kgMaldonado
2
57 kgBarbero
5
66 kgCapiot
7
69 kgCardis
8
72 kgSchmidt
9
63 kgGuldhammer
11
66 kgVinther
13
68 kgvan Goethem
18
77 kgAsselman
22
69 kgWalscheid
25
90 kgWetterhall
31
70 kgZangerle
34
63 kgKatyrin
36
65 kgReihs
37
75 kgPolnický
38
68 kgBenfatto
39
71 kgEising
40
80 kg
Weight (KG) →
Result →
90
57
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER WEIJST Geert | 63 |
2 | MALDONADO Anthony | 57 |
5 | BARBERO Carlos | 66 |
7 | CAPIOT Amaury | 69 |
8 | CARDIS Romain | 72 |
9 | SCHMIDT Fabien | 63 |
11 | GULDHAMMER Rasmus | 66 |
13 | VINTHER Troels Rønning | 68 |
18 | VAN GOETHEM Brian | 77 |
22 | ASSELMAN Jesper | 69 |
25 | WALSCHEID Max | 90 |
31 | WETTERHALL Alexander | 70 |
34 | ZANGERLE Joel | 63 |
36 | KATYRIN Roman | 65 |
37 | REIHS Michael | 75 |
38 | POLNICKÝ Jiří | 68 |
39 | BENFATTO Marco | 71 |
40 | EISING Tijmen | 80 |