Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Cardis
1
72 kgBakker
2
74.5 kgWillwohl
3
67 kgWetterhall
6
70 kgFrison
8
84 kgJensen
10
67 kgMaurelet
13
56 kgKamp
15
74 kgPorzner
16
75 kgGalta
17
78 kgEising
18
80 kgChristian
21
72 kgGarel
22
77 kgLander
23
70 kgGoolaerts
24
80 kgKrul
31
68 kgPedersen
36
71 kgClancy
40
79 kg
1
72 kgBakker
2
74.5 kgWillwohl
3
67 kgWetterhall
6
70 kgFrison
8
84 kgJensen
10
67 kgMaurelet
13
56 kgKamp
15
74 kgPorzner
16
75 kgGalta
17
78 kgEising
18
80 kgChristian
21
72 kgGarel
22
77 kgLander
23
70 kgGoolaerts
24
80 kgKrul
31
68 kgPedersen
36
71 kgClancy
40
79 kg
Weight (KG) →
Result →
84
56
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | CARDIS Romain | 72 |
2 | BAKKER Dennis | 74.5 |
3 | WILLWOHL Willi | 67 |
6 | WETTERHALL Alexander | 70 |
8 | FRISON Frederik | 84 |
10 | JENSEN August | 67 |
13 | MAURELET Flavien | 56 |
15 | KAMP Alexander | 74 |
16 | PORZNER Manuel | 75 |
17 | GALTA Fredrik Strand | 78 |
18 | EISING Tijmen | 80 |
21 | CHRISTIAN Mark | 72 |
22 | GAREL Adrien | 77 |
23 | LANDER Sebastian | 70 |
24 | GOOLAERTS Michael | 80 |
31 | KRUL Stef | 68 |
36 | PEDERSEN Casper | 71 |
40 | CLANCY Edward | 79 |