Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Downing
2
64 kgPlanckaert
4
71 kgReinders
5
78.1 kgGoolaerts
8
80 kgLawless
9
72 kgLampater
11
75 kgSchomber
13
75 kgKaňkovský
17
83 kgGarel
20
77 kgNikitin
22
61 kgOckeloen
24
66 kgVinther
25
68 kgSchulting
26
70 kgCastrique
27
81 kgOttema
28
77 kgDunne
31
88 kgSchelling
32
61 kgZurita
35
67 kgSulzberger
37
65 kgHonoré
41
68 kgKukrle
46
73 kg
2
64 kgPlanckaert
4
71 kgReinders
5
78.1 kgGoolaerts
8
80 kgLawless
9
72 kgLampater
11
75 kgSchomber
13
75 kgKaňkovský
17
83 kgGarel
20
77 kgNikitin
22
61 kgOckeloen
24
66 kgVinther
25
68 kgSchulting
26
70 kgCastrique
27
81 kgOttema
28
77 kgDunne
31
88 kgSchelling
32
61 kgZurita
35
67 kgSulzberger
37
65 kgHonoré
41
68 kgKukrle
46
73 kg
Weight (KG) →
Result →
88
61
2
46
# | Rider | Weight (KG) |
---|---|---|
2 | DOWNING Russell | 64 |
4 | PLANCKAERT Edward | 71 |
5 | REINDERS Elmar | 78.1 |
8 | GOOLAERTS Michael | 80 |
9 | LAWLESS Chris | 72 |
11 | LAMPATER Leif | 75 |
13 | SCHOMBER Nils | 75 |
17 | KAŇKOVSKÝ Alois | 83 |
20 | GAREL Adrien | 77 |
22 | NIKITIN Matvey | 61 |
24 | OCKELOEN Jasper | 66 |
25 | VINTHER Troels Rønning | 68 |
26 | SCHULTING Peter | 70 |
27 | CASTRIQUE Jonas | 81 |
28 | OTTEMA Rick | 77 |
31 | DUNNE Conor | 88 |
32 | SCHELLING Patrick | 61 |
35 | ZURITA Francesc | 67 |
37 | SULZBERGER Wesley | 65 |
41 | HONORÉ Mikkel Frølich | 68 |
46 | KUKRLE Michael | 73 |