Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kamp
1
74 kgJensen
2
67 kgde Kleijn
4
68 kgHuppertz
8
66 kgGalta
9
78 kgVinther
10
68 kgVingegaard
12
58 kgDe Decker
13
68 kgGuldhammer
14
66 kgEising
16
80 kgTronet
20
67 kgBrusselman
21
76 kgDonders
22
76 kgJones
24
81 kgNikitin
25
61 kgMagnusson
26
71 kgDowning
27
64 kgEikeland
28
68 kgMenten
29
68 kgOttema
30
77 kg
1
74 kgJensen
2
67 kgde Kleijn
4
68 kgHuppertz
8
66 kgGalta
9
78 kgVinther
10
68 kgVingegaard
12
58 kgDe Decker
13
68 kgGuldhammer
14
66 kgEising
16
80 kgTronet
20
67 kgBrusselman
21
76 kgDonders
22
76 kgJones
24
81 kgNikitin
25
61 kgMagnusson
26
71 kgDowning
27
64 kgEikeland
28
68 kgMenten
29
68 kgOttema
30
77 kg
Weight (KG) →
Result →
81
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | KAMP Alexander | 74 |
2 | JENSEN August | 67 |
4 | DE KLEIJN Arvid | 68 |
8 | HUPPERTZ Joshua | 66 |
9 | GALTA Fredrik Strand | 78 |
10 | VINTHER Troels Rønning | 68 |
12 | VINGEGAARD Jonas | 58 |
13 | DE DECKER Alfdan | 68 |
14 | GULDHAMMER Rasmus | 66 |
16 | EISING Tijmen | 80 |
20 | TRONET Steven | 67 |
21 | BRUSSELMAN Twan | 76 |
22 | DONDERS Jelle | 76 |
24 | JONES Brenton | 81 |
25 | NIKITIN Matvey | 61 |
26 | MAGNUSSON Kim | 71 |
27 | DOWNING Russell | 64 |
28 | EIKELAND Ken Levi | 68 |
29 | MENTEN Milan | 68 |
30 | OTTEMA Rick | 77 |