Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vinjebo
1
67 kgKragh Andersen
2
72 kgAriesen
3
70 kgKaňkovský
4
83 kgHurel
5
66 kgBonifazio
6
63 kgČerný
7
75 kgDe Decker
9
68 kgVingegaard
10
58 kgGibson
11
76 kgFolsach
12
81 kgSørensen
14
64 kgKamp
16
74 kgFarantakis
17
62 kgBoyer
22
67 kgAbrahamsen
23
78 kgProdhomme
25
63 kgNõmmela
26
69 kgMorin
27
74 kgFerasse
31
61 kgDonders
34
76 kg
1
67 kgKragh Andersen
2
72 kgAriesen
3
70 kgKaňkovský
4
83 kgHurel
5
66 kgBonifazio
6
63 kgČerný
7
75 kgDe Decker
9
68 kgVingegaard
10
58 kgGibson
11
76 kgFolsach
12
81 kgSørensen
14
64 kgKamp
16
74 kgFarantakis
17
62 kgBoyer
22
67 kgAbrahamsen
23
78 kgProdhomme
25
63 kgNõmmela
26
69 kgMorin
27
74 kgFerasse
31
61 kgDonders
34
76 kg
Weight (KG) →
Result →
83
58
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | VINJEBO Emil Mielke | 67 |
2 | KRAGH ANDERSEN Asbjørn | 72 |
3 | ARIESEN Johim | 70 |
4 | KAŇKOVSKÝ Alois | 83 |
5 | HUREL Tony | 66 |
6 | BONIFAZIO Leonardo | 63 |
7 | ČERNÝ Josef | 75 |
9 | DE DECKER Alfdan | 68 |
10 | VINGEGAARD Jonas | 58 |
11 | GIBSON Matthew | 76 |
12 | FOLSACH Casper | 81 |
14 | SØRENSEN Chris Anker | 64 |
16 | KAMP Alexander | 74 |
17 | FARANTAKIS Stylianos | 62 |
22 | BOYER Kevin | 67 |
23 | ABRAHAMSEN Jonas | 78 |
25 | PRODHOMME Nicolas | 63 |
26 | NÕMMELA Aksel | 69 |
27 | MORIN Emmanuel | 74 |
31 | FERASSE Thibault | 61 |
34 | DONDERS Jelle | 76 |