Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Pellaud
1
70 kgde Kleijn
2
68 kgBárta
3
75 kgPaterski
4
73 kgLienhard
5
73 kgShaw
6
63 kgJohansen
8
77 kgRodenberg
9
73 kgKrul
10
68 kgHolmes
12
67 kgThwaites
13
71 kgVan Dalen
15
70 kgSchlegel
16
72 kgFolsach
17
81 kgGoossens
18
64 kgMaitre
19
71 kgSchultz
20
60 kgDebeaumarché
23
75 kgMortensen
25
70 kg
1
70 kgde Kleijn
2
68 kgBárta
3
75 kgPaterski
4
73 kgLienhard
5
73 kgShaw
6
63 kgJohansen
8
77 kgRodenberg
9
73 kgKrul
10
68 kgHolmes
12
67 kgThwaites
13
71 kgVan Dalen
15
70 kgSchlegel
16
72 kgFolsach
17
81 kgGoossens
18
64 kgMaitre
19
71 kgSchultz
20
60 kgDebeaumarché
23
75 kgMortensen
25
70 kg
Weight (KG) →
Result →
81
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | PELLAUD Simon | 70 |
2 | DE KLEIJN Arvid | 68 |
3 | BÁRTA Jan | 75 |
4 | PATERSKI Maciej | 73 |
5 | LIENHARD Fabian | 73 |
6 | SHAW James | 63 |
8 | JOHANSEN Julius | 77 |
9 | RODENBERG Frederik | 73 |
10 | KRUL Stef | 68 |
12 | HOLMES Matthew | 67 |
13 | THWAITES Scott | 71 |
15 | VAN DALEN Jason | 70 |
16 | SCHLEGEL Michal | 72 |
17 | FOLSACH Casper | 81 |
18 | GOOSSENS Kobe | 64 |
19 | MAITRE Florian | 71 |
20 | SCHULTZ Jesper | 60 |
23 | DEBEAUMARCHÉ Nicolas | 75 |
25 | MORTENSEN Martin | 70 |