Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
de Kleijn
1
68 kgPellaud
2
70 kgBárta
3
75 kgPaterski
4
73 kgDebeaumarché
5
75 kgLienhard
6
73 kgShaw
7
63 kgGrondin
9
77 kgJohansen
10
77 kgThwaites
11
71 kgKaňkovský
12
83 kgKrul
13
68 kgEinhorn
15
72 kgVan Dalen
17
70 kgSchlegel
18
72 kgMaitre
20
71 kgGoossens
21
64 kgSchultz
22
60 kgAvoine
26
70 kgMortensen
27
70 kg
1
68 kgPellaud
2
70 kgBárta
3
75 kgPaterski
4
73 kgDebeaumarché
5
75 kgLienhard
6
73 kgShaw
7
63 kgGrondin
9
77 kgJohansen
10
77 kgThwaites
11
71 kgKaňkovský
12
83 kgKrul
13
68 kgEinhorn
15
72 kgVan Dalen
17
70 kgSchlegel
18
72 kgMaitre
20
71 kgGoossens
21
64 kgSchultz
22
60 kgAvoine
26
70 kgMortensen
27
70 kg
Weight (KG) →
Result →
83
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | DE KLEIJN Arvid | 68 |
2 | PELLAUD Simon | 70 |
3 | BÁRTA Jan | 75 |
4 | PATERSKI Maciej | 73 |
5 | DEBEAUMARCHÉ Nicolas | 75 |
6 | LIENHARD Fabian | 73 |
7 | SHAW James | 63 |
9 | GRONDIN Donavan | 77 |
10 | JOHANSEN Julius | 77 |
11 | THWAITES Scott | 71 |
12 | KAŇKOVSKÝ Alois | 83 |
13 | KRUL Stef | 68 |
15 | EINHORN Itamar | 72 |
17 | VAN DALEN Jason | 70 |
18 | SCHLEGEL Michal | 72 |
20 | MAITRE Florian | 71 |
21 | GOOSSENS Kobe | 64 |
22 | SCHULTZ Jesper | 60 |
26 | AVOINE Kévin | 70 |
27 | MORTENSEN Martin | 70 |