Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Stokbro
1
70 kgAaskov Pallesen
2
60 kgBabor
3
79 kgMihkels
4
75 kgHarteel
5
66 kgOttema
6
77 kgGate
8
71 kgVermeltfoort
11
85 kgde Vries
12
66 kgKukrle
14
73 kgCañellas
15
66 kgDauphin
16
70 kgLevasseur
20
74 kgSheehan
21
69 kgNeuman
22
72 kgKroonen
24
79 kgErmenault
25
75 kgKvist
26
72 kgHuppertz
27
66 kgde Jong
28
72 kg
1
70 kgAaskov Pallesen
2
60 kgBabor
3
79 kgMihkels
4
75 kgHarteel
5
66 kgOttema
6
77 kgGate
8
71 kgVermeltfoort
11
85 kgde Vries
12
66 kgKukrle
14
73 kgCañellas
15
66 kgDauphin
16
70 kgLevasseur
20
74 kgSheehan
21
69 kgNeuman
22
72 kgKroonen
24
79 kgErmenault
25
75 kgKvist
26
72 kgHuppertz
27
66 kgde Jong
28
72 kg
Weight (KG) →
Result →
85
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | STOKBRO Andreas | 70 |
2 | AASKOV PALLESEN Jeppe | 60 |
3 | BABOR Daniel | 79 |
4 | MIHKELS Madis | 75 |
5 | HARTEEL Jelle | 66 |
6 | OTTEMA Rick | 77 |
8 | GATE Aaron | 71 |
11 | VERMELTFOORT Coen | 85 |
12 | DE VRIES Hartthijs | 66 |
14 | KUKRLE Michael | 73 |
15 | CAÑELLAS Xavier | 66 |
16 | DAUPHIN Florian | 70 |
20 | LEVASSEUR Jordan | 74 |
21 | SHEEHAN Riley | 69 |
22 | NEUMAN Dominik | 72 |
24 | KROONEN Max | 79 |
25 | ERMENAULT Corentin | 75 |
26 | KVIST Linus | 72 |
27 | HUPPERTZ Joshua | 66 |
28 | DE JONG Timo | 72 |