Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Van de Paar
2
79 kgMarsman
3
75 kgSöderqvist
4
83 kgMacleod
6
57 kgTidball
9
70 kgLecamus-Lambert
10
79 kgLootens
11
74 kgVangheluwe
12
79 kgKnecht
14
66 kgRootkin-Gray
15
67 kgBanaszek
16
75 kgLabrosse
17
65 kgSexton
20
71 kgWeulink
21
62 kgNolde
22
79 kgvan Sintmaartensdijk
23
77 kgDauphin
25
70 kgNeuman
26
72 kgJackson
27
75 kg
2
79 kgMarsman
3
75 kgSöderqvist
4
83 kgMacleod
6
57 kgTidball
9
70 kgLecamus-Lambert
10
79 kgLootens
11
74 kgVangheluwe
12
79 kgKnecht
14
66 kgRootkin-Gray
15
67 kgBanaszek
16
75 kgLabrosse
17
65 kgSexton
20
71 kgWeulink
21
62 kgNolde
22
79 kgvan Sintmaartensdijk
23
77 kgDauphin
25
70 kgNeuman
26
72 kgJackson
27
75 kg
Weight (KG) →
Result →
83
57
2
27
# | Rider | Weight (KG) |
---|---|---|
2 | VAN DE PAAR Jarne | 79 |
3 | MARSMAN Tim | 75 |
4 | SÖDERQVIST Jakob | 83 |
6 | MACLEOD Callum | 57 |
9 | TIDBALL William | 70 |
10 | LECAMUS-LAMBERT Florentin | 79 |
11 | LOOTENS Gust | 74 |
12 | VANGHELUWE Warre | 79 |
14 | KNECHT Noah | 66 |
15 | ROOTKIN-GRAY Jack | 67 |
16 | BANASZEK Norbert | 75 |
17 | LABROSSE Jordan | 65 |
20 | SEXTON Tom | 71 |
21 | WEULINK Meindert | 62 |
22 | NOLDE Tobias | 79 |
23 | VAN SINTMAARTENSDIJK Daan | 77 |
25 | DAUPHIN Florian | 70 |
26 | NEUMAN Dominik | 72 |
27 | JACKSON George | 75 |