Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 78
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Dehairs
1
82 kgVan de Wynkele
2
75 kgSöderqvist
3
83 kgKubiš
4
70 kgKrijnsen
5
73 kgDe Schuyteneer
6
74 kgStosz
7
70 kgLovidius
9
70 kgToudal
11
72 kgPajur
15
78 kgDelle Vedove
16
73 kgWillems
17
64 kgMainguenaud
19
63 kgBogusławski
23
77 kgBoroš
25
69 kgKonychev
27
76 kgHaest
28
70 kgTurek
29
72 kgAvondts
31
62 kgKlevgård
991
74 kg
1
82 kgVan de Wynkele
2
75 kgSöderqvist
3
83 kgKubiš
4
70 kgKrijnsen
5
73 kgDe Schuyteneer
6
74 kgStosz
7
70 kgLovidius
9
70 kgToudal
11
72 kgPajur
15
78 kgDelle Vedove
16
73 kgWillems
17
64 kgMainguenaud
19
63 kgBogusławski
23
77 kgBoroš
25
69 kgKonychev
27
76 kgHaest
28
70 kgTurek
29
72 kgAvondts
31
62 kgKlevgård
991
74 kg
Weight (KG) →
Result →
83
62
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | DEHAIRS Simon | 82 |
2 | VAN DE WYNKELE Lorenz | 75 |
3 | SÖDERQVIST Jakob | 83 |
4 | KUBIŠ Lukáš | 70 |
5 | KRIJNSEN Jelte | 73 |
6 | DE SCHUYTENEER Steffen | 74 |
7 | STOSZ Patryk | 70 |
9 | LOVIDIUS Edvin | 70 |
11 | TOUDAL Emil | 72 |
15 | PAJUR Romet | 78 |
16 | DELLE VEDOVE Alessio | 73 |
17 | WILLEMS Jago | 64 |
19 | MAINGUENAUD Tom | 63 |
23 | BOGUSŁAWSKI Marceli | 77 |
25 | BOROŠ Michael | 69 |
27 | KONYCHEV Alexander | 76 |
28 | HAEST Jasper | 70 |
29 | TUREK Daniel | 72 |
31 | AVONDTS Mathis | 62 |
991 | KLEVGÅRD Kristian | 74 |