Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Malucelli
1
68 kgBalkan
2
69 kgSchumacher
4
71 kgViel
5
72 kgMonsalve
6
62 kgFinetto
7
62 kgJules
9
64 kgTybor
12
72 kgTivani
14
67 kgMalaguti
16
67 kgManninen
17
70 kgZanon
18
63 kgBenetseder
20
65 kgAït El Abdia
21
66 kgLahsaini
24
77 kgGodoy
26
64 kgHrinkow
27
61 kgNouisri
28
74 kgUbeto
31
60 kgTanfield
32
80 kg
1
68 kgBalkan
2
69 kgSchumacher
4
71 kgViel
5
72 kgMonsalve
6
62 kgFinetto
7
62 kgJules
9
64 kgTybor
12
72 kgTivani
14
67 kgMalaguti
16
67 kgManninen
17
70 kgZanon
18
63 kgBenetseder
20
65 kgAït El Abdia
21
66 kgLahsaini
24
77 kgGodoy
26
64 kgHrinkow
27
61 kgNouisri
28
74 kgUbeto
31
60 kgTanfield
32
80 kg
Weight (KG) →
Result →
80
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | MALUCELLI Matteo | 68 |
2 | BALKAN Onur | 69 |
4 | SCHUMACHER Stefan | 71 |
5 | VIEL Mattia | 72 |
6 | MONSALVE Yonathan | 62 |
7 | FINETTO Mauro | 62 |
9 | JULES Justin | 64 |
12 | TYBOR Patrik | 72 |
14 | TIVANI German Nicolás | 67 |
16 | MALAGUTI Alessandro | 67 |
17 | MANNINEN Matti | 70 |
18 | ZANON Elia | 63 |
20 | BENETSEDER Josef | 65 |
21 | AÏT EL ABDIA Anass | 66 |
24 | LAHSAINI Mouhssine | 77 |
26 | GODOY Yonder | 64 |
27 | HRINKOW Dominik | 61 |
28 | NOUISRI Ali | 74 |
31 | UBETO Miguel Armando | 60 |
32 | TANFIELD Charlie | 80 |