Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Pozdnyakov
1
67 kgKeough
2
68 kgAït El Abdia
3
66 kgPutt
5
75 kgMager
6
60 kgSellier
7
68 kgJourniaux
9
63 kgJones
10
64 kgLahsaini
13
77 kgShumov
14
65 kgRumac
15
71 kgGutierrez
17
63 kgMarengo
18
69 kgGaillard
19
64 kgAsadov
21
77 kgŠiškevičius
22
70 kgHrinkow
25
61 kg
1
67 kgKeough
2
68 kgAït El Abdia
3
66 kgPutt
5
75 kgMager
6
60 kgSellier
7
68 kgJourniaux
9
63 kgJones
10
64 kgLahsaini
13
77 kgShumov
14
65 kgRumac
15
71 kgGutierrez
17
63 kgMarengo
18
69 kgGaillard
19
64 kgAsadov
21
77 kgŠiškevičius
22
70 kgHrinkow
25
61 kg
Weight (KG) →
Result →
77
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | POZDNYAKOV Kirill | 67 |
2 | KEOUGH Luke | 68 |
3 | AÏT EL ABDIA Anass | 66 |
5 | PUTT Tanner | 75 |
6 | MAGER Christian | 60 |
7 | SELLIER Simon | 68 |
9 | JOURNIAUX Axel | 63 |
10 | JONES Chris | 64 |
13 | LAHSAINI Mouhssine | 77 |
14 | SHUMOV Nikolai | 65 |
15 | RUMAC Josip | 71 |
17 | GUTIERREZ José Manuel | 63 |
18 | MARENGO Umberto | 69 |
19 | GAILLARD Marlon | 64 |
21 | ASADOV Elchin | 77 |
22 | ŠIŠKEVIČIUS Paulius | 70 |
25 | HRINKOW Dominik | 61 |